
THEINTERNET,mapped on the opposite page, is a scale-free network in that
some siteS (starbursts and detail above) have a seemingly unlimited

number of connections to other sites. This map, made on February 6, 2003,
traces the shortest routes from atest WebsinHo about 100,000 others,

using like colors for similar Webaddresses.
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Scientistshaverecentlydiscoveredthat variouscomplexsystemshave
antlnderlyihg~..'~tJ;i~e~tu"eg~Ye'l"rne(;lb9.$haredorganili ngprincipies.

Thisinsighthas important impli~ationsfor a hostof
applications,fromdrugdevelopmentto Internetsecurity

BYALBERT-U\SZLOBARABASIANDERICBONABEAU
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The brain is a network of nerve cells con-
nected by axons, and cells themselves are
networks of molecules connected by bio-
chemical reactions. Societies, too, are net-
works of people linked by friendships,
familial relationships and professional
ties. On a larger scale, food webs and eco-
systems can be represented as networks
of species. And networks pervade tech-
nology: the Internet, power grids and
transportation systems are but a few ex"
amples. Even the language we are using
to convey these thoughts to you is a net-
work, made up of words connected by
syntactic relationships,

Yet despite the importance and per-
vasiveness of networks, scientists have
had little understanding of their structure
and properties. How do the interactions
of several malfunctioning llodes in a com-
plex genetic network resl).lt in cancer?
How does diffusion occur so rapidly.in
certain social and communications sys-
tems, leading to epidemics ()fdiseases and
computer viruses? How do ~ome net-
works continue to function even after the
vast majority of their nodes have failed?

Recent research has begun to ansWer
such questions. Over the past feWyears,
investigators from a variety of fields have
discovered that many .networks-froIIl
the World Wide Web to a cell's metabol-
ic system to actors in Hollywood-are
dominated by a relatively sm.all number
of nodes that ani c:oll1l~ctedto many oth"
er sites. Networks containing suchim-
portant nodes, or hubs, tend to be what
we call "scale-free," in the sense that
some hubs have a seemingly unlimited

number of links and no node is typical of
the others. These networks also behave in
certain predictable ways; for example,
they are remarkably resistant to acciden-
tal failures but extremely vulnerable to
coordinated attacks.

Such discoveries have dramatically
changed what we thought we knew about
the complex interconnected world around
us. Unexplained by previous network the~
ories, hubs offer convincing proof that
various complex systems have a strict ar-
chitecture, ruled by fundamental laws-
laws that appear to apply equally to cells,
col11puters, languages and society. Fur-
thermore, these organizing principles have
significant implications for developing
better drugs, defending the Internet from
hackers, and halting the spread of deadly
epidemics, among other applicati()ns.

Networks without Scale
FOR MORE THAN 40 YEARS, science
treated all complex net\'\(orks as being
completely randoIIl. This paradigIIl has its
roots in the work of two H1ir1garianmath~
ematicians, the inimitable Paul Erdos and
his close collaborator Alfred Renyi. In
1959, aiming to describe networks seen in
communications and the lif~ sciences,
Erdos and Renyi suggested that suc:h sys-
tems could be effectively l110deledby con-
necting their nodes withrandornlyplaced
links. The simplicitYof their approach and
the elegance of so~e of their related theo-
rems revitalized graph theory, leading to
the emergence of a field in mathematics
that focuses on random networks.

An important prediction of random-
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network theory is that, despite the ran-
dom placement of links, the resulting sys-
tem will be deeply democratic: most
nodes will have approximately the same
number of links. Indeed, in a random net-
work the nodes follow a Poisson distrib-
ution with a bell shape, and it is extreme-
ly rare to find nodes that have significant-
ly more or fewer links than the average.
Random networks are also called expo-
nential, because the probability that a
node is connected to k other sites de-
creases exponentially for large k.

So in 1998, when we, together with
Hawoong Jeong and Reka Albert of the
University of Notre Dame, embarked on
a project to map the World Wide Web,
we expected to find a random network.
Here's why: people follow their unique
interests when deciding what sites to link
their Web documents to, and given the di-
versity of everyone's .interests and the
tremendous number of pages they can
choose from, the resulting pattern of con-
nections should appear fairly random.

The measurements, however, defied
that expectation. Software designed for
this project hopped from one Web page
to another and collected all the links it
could. Although this virtu:alrobot reached
only a tiny fraction of the entire Web, the
map it assembled revealed something
quite surprising: a few highly connected
pages are essentially holding the World
Wide Web together. More than 80 per-
cent ()fthe pages on the map had feWer
than four links, but a small minority, less
than 0.01 percent of all nodes, had more
than 1,000. (A subsequent Web survey
would uncover one document that had
been referenced by more than two million
other pages!)

Counting how many Web pages have
ex'1stly k links showed that the distribu-
tion followed a so-called power law: the
probability that any node was connected
to k other nodes was proportional to Ykn.
The value of n for incoming links was ap-
proximately 2, so, for instance, any node
was roughly four times as likely to have
just half the number of incoming links as
another node. Power laws are quite dif-
ferent from the bell-shaped distributions
that characterize random networks.
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RANDOMVERSUSSCALE-FREENETWORKS I

RANDOMNETWORKS,which resemble the U.S.highway system
(simplified in left map), consist of nodes with randomly placed
connections. In such systems, a plot of the distribution of node
linkages will follow a bell-shaped curve (left graph), with most
nodes having approximately the same number of links.

In contrast, scale-free networks, which resemble,the U.S.
airline system (simplified in right map). contain hubs [red)-

RandomNetwork

nodes with a very high number of links. In such networks, the
distribution of node linkages follows a power law [center graph)
in that most nodes have just a few connections and some have
a tremendous number of links. In that sense, the system has no
"scale." The defining characteristic of such networks is that the
distribution of links, if plotted on a double-logarithmic scale
[right graph), results in a straight line.
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Specifically, a power law does not have a
peak, as a bell curve does, but is instead de-
scribed by a continuously decreasing func-
tion. When plotted on a double-logarith-
mic scale, a power law is a straight line
[see illustration above]. In contrast to the
democratic distribution of links seen in
random networks, power laws describe
systems in which a few hubs, such as Ya-
hoo and Google, dominate.

Hubs are simply forbidden in random
networks. When we began to map the
Web, we expected the nodes to follow a
bell-shaped distribution, as do people's
heights. Instead we discovered certain
nodes that defied explanation, almost as
if we had stumbled on a significant num-
ber of people who were 100 feet tall, thus
prompting us to coin the term" scale-free."
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Scale-Free Networks Abound
OVER THE PAST several years, re-
searchers have uncovered scale-free struc"
tures in a stunning range of systems.
When we studied the World Wide Web,
we looked at the virtual network of Web
pages connected to one another by hy-
perlinks. In contrast, .ty1ichalisFaloutsos
of the University of California at River-
side, Petros Falotitsos of theUniversity of
Toronto arid Christos Faloutsos of Car-
negie MelloQ Uq~versity .analyzed tbe
physical structure of the Internet. These
three computer-scientist brothers investi-
gated the routers connected by optical or
other communications lines and found
that the topology of that network, too, is
scale-free.

Researchers have also discovered that

some social networks are scale-free. A col-
laboration between scientists from Boston
University and Stockholm University, for
instance, has shown that a netWork of
sexual relationships among people in
Sweden followed a poWer law: although
most individuals had only a few sexual
partners during their lifetime, a few (the
hubs) had hundreds. A recent study led
by Stefan Bornholdt of the University of
Kiel in Germany concluded that the net-
work of people connected bye-mail is
likewise scahfree. Sidney Redner of
Boston University demonstrated that the
network of scientific papers, connected
by citations, follows a power law as well.
And Mark Newman of the University of
Michigan at Ann Arbor examined col-
laborations among scientists in several
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disciplines,indudingphysicians and com-
puter scientists, and found that those net-
works were also scale-free, corroborating
a study we conducted focusing on math-
ematicians and neurologists. (Interesting-
ly, one of the largest hubs in the mathe-
matics community is Erdos himself, who
wrote more than 1,400 papers with no
fewer than 500 co-authors.)

Scale-free networks can occur in busi-
ness. Walter W. Powell of Stanford Uni-
versity, Douglas R. White of the Univer-
sity of California at Irvine, Kenneth W.
Koput of the University of Arizona, and
Jason-Owen Smith 6f the University of
Michigan studied the formation of al-
liance networks in the U.S. biotechnolo:
gy industry and discovered definite hubs~
for instance, companies such as Genzyme,
Chiron and Genentech had a dispropor-
tionately large number of partnerships
with other firms. Researchers in Italy took
a deeper look at that network. Using data
collected by the University of Siena's Phar-
maceuticallndustry Database, which now
provides information for around 20,100
R&D agreements among more than 7,200
organizations, they found that the hubs
detected by Powell and his colleagues were
actually part of a scale-free network.

Even the network of actors in Holly-
wood-,.,popularized by the game Six De-
grees of Kevin Bacon, in which players
try to connect actors to Bacon via the
movies in which they have appeared to-
gether-is scale-free. A quantitative analy-

sis of that network showed that it, too,
is dominated by hubs. Specifically, al-
though most actors have only a few links
to others, a handful of actors, including
Rod Steiger and Donald Pleasence, have
thousands of connections. (Incidentally,
on a list of most connected actors, Bacon
ranked just 876th.)

On a more serious note, scale-free
networks are present in the biological
realm. With Zoltan Oltvai, a cell biologist
from Northwestern University, we found
a scale-free structure in the cellular meta-
bolic networks of 43 different organisms
from all three domains of life, including
Archaeoglobus fulgidus{an archaeb<lc-
terium), Escherichia coli (a eubacterium)
and Caenorhabditis elegans (a eukary-
ote). In such networks, cells burn food by
splitting complex molecules to release en-
ergy. Each node is a particular molecule,
and each link is a biochemical reaction.
We found that most molecules participate
in just one or two reactions, but a few (the
hubs), such as water and adenosine tri-
phosphate, playa role in most of them.

We discovered that the protein-inter-
action network of cells is scale-free as well.
In such a network, two proteins are "con-
nected" if they are known to interact with
each other. Whenwe investigated Baker's
yeast, one of the simplest eukaryotic (nu-
cleus-containing) cells, with thousands of
proteins, we discovered a scale-free topol-
ogy: although most proteins interact with
only one or two others, a few are able to
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attach themselves physically to a huge
number. We found a similar result in the
protein-interaction network of an organ-
ism that is very different from yeast, a sim-
ple bacterium called Helicobacter pylori.

Indeed, the more that scientists stud-
ied networks, the more they uncovered
scale-free structures. These findings raised
an important question: How can systems
as fundamentally different as the cell and
the Internet have the same architecture
and obey the same laws? Not only are
these various networks scale-free, they
also share an intriguing property: for rea-
sons not yet known, the value of n in the
kn term of thepower law tends to fall be-
tween 2 and 3.

The Rich Get Richer
PERHAPS A Mo..RE BASIC question is
why randpm-network theory fails to ex-
plain the existence of hubs. A closer ex-
amination of the work of Erdos and Ren-
yi reveals two reasons.

In developing their model, Erdos and
Renyi assumed that they had the full in-
ventory of nodes before they placed the
links. In contrast, the number of docu-
ments. on the Web is anything but con-
stant. In 1990 the Web had only one page.
Now it has more than three billion. Most
networks have expanded similarly. Hol-
lywood had only a handful of actors in
1890, but as new people joined the trade,
the network grew to include more than
half a million, with the rookies connect-
ing to veteran actors. The Internet had
only a few routers about three decades
ago, but it gradually grew to have mil-
lions, with the new routers always linking
to those that were already part of the net-
work. Thanks to the growing nature of
real networks, older nodes had greater
opportunities to acquire links.

Furthermore, all nodes are not equal.
When deciding where to link their Web
page, people can choose from a few billion
locations. Yet most of us are familiar with
only a tiny fraction of the full Web, and
that subset tends to include the more con-
nected sites because they are easier to find.
By simply linking to those nodes, people
exercise and reinforce a bias toward them.
This process of "preferential attachment"
occurs elsewhere. In Hollywood the more
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BIRTHOFASCALE-FREENETWORK
A SCALE-FREENETWORKgrows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node
(green) prefers to attach to an existing node (red) that already has many other connections. These two basic mechanisms-growth
and preferential attachment-will eventually lead to the system's being dominated by hubs, nodes having an enormous number of links.
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connected actors are more likely to be
chosen for new roles. On the Internet the
more connected routers, which typically
have greater bandwidth, are more desir-
able for new users. In the U.S. biotech in-
dustry, well-established companies such as
Genzyme tend to attract more alliances,
which further increases their desirability
for future partnerships. Likewise, the
most cited articles in the scientific litera-
ture stimulate even more researchers to
read and cite them, a phenomenon that
noted sociologist Robert K. Merton
called the Matthew effect, after a passage
in the New Testament: "For unto every
one that hath shall be given, and he shall
have abundance."

These two mechanisms-growth and
preferential attachment-help to explain
the existence of hubs: as new nodes ap-
pear, they tend to connect to the more
connected sites, and these popular loca-
tions thus acquire more links over time
than their less connected neighbors. And
this "rich get richer" process will gener-
ally favor the early nodes, which are more
likely to eventually become hubs.

Along with Reka Albert, we have used
computer simulations and calculations to
show that a growing network with pref-
erential attachment will indeed become
scale-free, with its distribution of nodes
following a power law. Although this the-
oretical model is simplistic and needs to
be adapted to specific situations, it does
appear to confirm our explanation for
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why scale-free networks are so ubiquitous
in the real world.

Growth and preferential attachment
can even help explicate the presence of
scale-free networks in biological systems.
Andreas Wagner of the University of
New Mexico and David A. Fell of Oxford
Brookes University in England have
found, for instance, that the most-con-
nected molecules in the E. coli metabolic
network tend to have an early evolution-
ary history: some are believed to be rem-
nants of the so-called RNA world (the
evolutionary step before the eInergence of
DNA), and others are coiJ;].poneptsohre
most ancient metabolic pathways.

Interestingly, the mechanism of pref-
erential attachment tends to be linear. In
other words, a new node is twice as Hke-
ly to link to an existing node that has
twice as many connections as its neigh-
bor. Redner and his colleagues at Boston
University and elsewhere have investigat-
ed different types of preferential attach-
ment and have learned that if the mecha-
nism is faster than linear (for example, a
new node is four times as likely to link to

~ ~
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an existing node that has twice as many
connections), one hub will tend to run
away with the lion's share of connections.
In such "winner take all" scenarios, the
network eventually assumes a star topol-
ogy with a central hub.

AnAchilles' Heel
AS HUMANITY BECOMES increasing-
ly dependent on power grids and com-
munications webs, a much-voiced con-
cern arises: Exactly how reliable are these
types of networks? The good news is that
complex systems can be amazingly re-
silient against accidental failures. In fact,
although hundreds of routers routinely
malfunction on the Internet at any mo-
ment, the network rarely suffers major
disruptions. A similar degree of robust-
ness characterizes. living systems: people
rarely notice the consequences of thou-
sands of errors in their cells, ranging from
mutations to misfolded proteins. What is
the origin of this robustness?

Intuition tells us that the breakdown
ofa substantial number of nodes will re-
sult in a network's inevitable fragmenta-

ALBERT'L4SZL.6BARABASI. and ERICBONABEAU study the behavior and characteristics of
myriad complex systems, ranging from the Internet to insect colonies. Barabasi is Emil T.
Hofman. Professor of Physics at the. University of Notre Dame, where he directs research
on complex networks. He is author of Linked: The New Science of Networks. Bonabeau is
chief scientist at Icosystem, a consulting firm based in Cambridge, Mass., that applies the
tools of complexity science to the discovery of business opportunities. He is co-author of
SwarmIntelligence: From Natural to ArtificialSystems. Thisis Bonabeau's second article
for Scientific American.
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tion. This is certainly trUe for random net-
works: if a critical fraction of nodes is re-
moved, these systems break into tiny,
noncommunicating islands. Yet simula-
tions of scale-free networks tell a different
story: as many as 80 percent of random-
ly selected Internet routers can fail and the
remaining ones will still form a compact
cluster in which there will still be a path
between any two nodes. It is equally dif-
ficult to disrupt a cell's protein-interaction
network: our measurements indicate that
even after a high level of random muta-
tions are introduced, the unaffected pro-
teins will continue to work together.

In general, scale-free networks dis-
play an amazing robustness against ac-
cidental failures, a property that is root-
ed in their inhomogeneous topology. The
random removal of nodes will take out
mainly the small ones because they are
much more plentiful than hubs. And the
elimination of small nodes will not dis-
rupt the network topology significantly,
because they contain few links compared
with the hubs, which connect to nearly
everything. But a reliance on hubs has a
serious drawback: vulnerability to attacks.

In a series of simulations, we found

that the removal of just a few key hubs
from the Internet splintered the system
into tiny groups of hopelessly isolated
routers. Similarly, knockout experiments
in yeast have shown that the removal of
the more highly connected proteins has a
significantly greater chance of killing the
organism than does the deletion of other
nodes. These hubs are crucial-if muta-
tions make them dysfunctional, the cell
will most likely die.

A reliance on hubs can be advanta-
geous or not, depending on the system.
Certainly, resistance to random break-
down is good news for both the Internet
and the caLIn addition, the cell's reliance
on hubs provides pharmaceutical re-
searchers with new strategies for selecting
drug targets, potentially leading to cures
that would kill only harmful cells or bac-
teria by selectively targeting their hubs,
while leaving healthy tissue unaffected.
But the ability of a small group of well-in-
formed hackers to crash the entire com-
munications infrastructure by targeting
its hubs is a major reason for concern.

The Achilles' heel of scale-free net-
works raises a compelling question: How
many hubs are essential? Recent research
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suggests that, generally speaking, the si-
multaneous elimination of as few as 5 to
15 percent of all hubs can crash a system.
For the Internet, our experiments imply
that a highly coordinated attack-first re-
moving the largest hub, then the next
largest, and so on-could cause signifi-
cant disruptions after the elimination of
just several hubs. Therefore, protecting
the hubs is perhaps the most effective
way to avoid large-scale disruptions
caused by malicious cyber-attacks. But
much more work is required to deter-
mine just how fragile specific networks
are. For instance, could the failure of sev-
eral hubs like Genzyme and Genentech
lead to the collapse of the entire U.S. bio-
tech industry?

Scale-Free Epidemics
KNOWLEDGE ABOUT scale-free net-
works has implications for understanding
the spread of computer viruses, diseases
and fads. Diffusion theories, intensively
studied for decades by both epidemi-
ologists and marketing experts, predict a
critical threshold for the propagation of
a contagion throughout a population.
Any virus, disease or fad that is less in-
fectious than that well-defined threshold
will inevitably die out, whereas those
above the threshold will multiply expo-
nentially, eventually penetrating the en-
tire system.

Recently, though, Romualdo Pastor-
Satorras of the Polytechnic University of
Catalonia in Barcelona and Alessandro
Vespigniani of the International Center
for Theoretical Physics in Trieste, Italy,
reached a disturbing conclusion. They
found that in a scale-free network the
threshold is zero. That is, all viruses, even
those that are weakly contagious, will
spread and persist in the system. This re-
sult explains why Love Bug, the most
damaging computer virus thus far (it shut
down the British Parliament in 2000),
was still one of the most pervasive virus-
es a year after its supposed eradication.

Because hubs are connected to many
other nodes, at least one hub will tend to
be infected by any corrupted node. And
once a hub has been infected, it will pass
the virus to numerous other sites, eventu-
ally compromising other hubs, which will
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HOWROBUSTARERANDOMANDSCALE-FREENETWORKS? I

THEACCIDENTALFAILUREof a number of nodes in a random
network (top panels) can fracture the system into non-
communicating islands. In contrast, scale-free networks are
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more robust in the face of such failures (middle panels).
But they are highly vulnerable to a coordinated attack against
their hubs (bottom panels).

0

After

0
Failed node

p
~

.
0

0

'*

After

After

:::i
~
"-
Z
:J'"

then spread the virus throughout the en-
tire system.

The fact that biological viruses spread
in social networks, which in many cases
appear to be scale-free, suggests that sci-
entists should take a second look at the
volumes of research written on the inter-
play of network topology and epidemics.
Specifically, in a scale-free network, the

traditionalpublichealth approach of ran-
dom immunization could easily fail be-
cause it would very likely neglect a num-
ber ofthe hubs. In fact, nearly everyone
would have to be treated to ensure that
the hubs were not missed. A vaccination
for measles, for instance, must reach 90
percent of the population to be effective.

Instead of random immunizations,
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thoggh, what if doctors targeted the hubs,
or the most connected individuals? Re-
search in scale-free networks indicates
that this alternative approach could beef-
fective even if the immunizations reached
only a small fraction of the overall popu-
lation, provided that the fraction con-
tained the hubs.
But identifyingthe hubs in a social
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network is much more difficult than de-
tecting them in other types of systems.
Nevertheless, Reuven Cohen and Shlomo
Havlin of Bar-Han University in Israel, to-
gether with Daniel ben-Avraham of
Clarkson University, have proposed a
clever solution: immunize a small fraction
of the random acquaintances of arbitrar- .
ily selected individuals, a procedure that
selects hubs with a high probability be-
cause they are linked to many people.
That approach, though, leads to a num-
ber of ethical dilemmas. For instance,
even if the hubs could be identified,
should they have priority for immuniza-

tions and cures? Such issues notwith-
standing, targeting hubs could be the
most pragmatic solution for the future
distribution of AIDS or smallpox vaccines
in countries and regions that do not have
the resources to treat everyone.

In many business contexts, people
want to start, not stop, epidemics. Viral
marketing campaigns, for instance, often
specifically try to target hubs to speed the
adoption of a product. Obviously, such a
strategy is not new. Back in the 1950s, a
study funded by pharmaceutical giant
Pfizer discovered the important role that
hubs play in how quickly a community of

It's a SmallWor(d,AfterAll

doctors begins using a new drug. Indeed,
marketers have intuitively known for
some time that certain customers outshine
others in spreading promotional buzz
about products and fads. But recent work
in scale-free networks provides the scien-
tific framework and mathematical tools to
probe that phenomenon more rigorously.

FromTheoryto Practice
ALTHOUGH SCALE-FREEnetworks
are pervasive, numerous prominent ex-
ceptions exist. For example, the highway
system and power grid in the u.s. are not
scale-free. Neither are most networks

one another.. - -.
The smalt~world property does not necessarily indicate the

presence of a.ny magic organizing principle. Even a large network
witurely random connections will be a small world. Consider
t,n u ~i av

in als know~anotherl.000,then amillion, -:
be just two handshakes away from you, a billion will be just three
away, and the earth's entire population will be well withfi:l four,
Given that fact, the notion that any two.strangers in the world are,

d average of . egr,
IV tihntveal e c

Our simple calculation assumes that the people you know are
all strangers to one another. In reality, there is much overlap.
Indeed, society is fragmented into clusters of individuals-having
similar c' uc 'ncome.or interests). aJ~ature
ihathas!t~ --
followingthe seminal workin the 1970-sofMarkGranovetter,
then a graduate student at Harvard,Clustering\s also a general
property ofmany othe,rtypes of networks, In1998 DuncanWatts
and Steven Strqgat en both at CornellUniversity,
significant 2liJsteri !vari£tyil'6fsy~~ems:'fr'iimtl
gridto the he'IIralnetworkof the Caenorhabditisefegans Worm.

Atfirst glance, isolated clusters ofhighly interconnected
nodes appear to run counter t01he topology of scale-free
networks, inwhich a number ofhubs raoiate throughout the
syst~m,lin verytRing~!Re~ently,'H~weverrwe.havl".. ,i' . M

that the two operties are compatible:.a network can be both
highly clustered and scale-free when small, tightly interlinked
clusters of nodes are connected into larger, less cohesive groups
(teft), Thistype of hierarchy appears to exist in a number of
systems, fr~~Jhe WorldWide)Yeb(io,yV/)jchc sare:,
groupings ofWebpages devotei:!to the same t ) to a cell
(in whichclusters are teams of molecules responsible for
a specific function). -A.-L.B. and e.B:
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asking them to forwardthe correspondence to acquaintances
whomight be able to shepherd it closerto a target recipient: a
stockbroker in Boston. Totrack"each of the different paths,

11.,t1i1 ask e p ant\.~o mai w ey p d th erto,somec ,

the letters that eventually arrived at the final destination had
passed through an ave-rageof six individuals-the basis of the
popular notion of "sixdegrees of separ'!tion" between everyone.

Althou am rk rdly:£onclu-'-c
letter~ ney de th y stofkbroke
recen~ly learned that other networks exhibit this "small world"
property, We have found, for instance, that a path of just three
reactions will connect almost any pair of chemicals in a cell. And

HIERARCHICALC!-~STE clud
pag the FrankLio w).,
be I to otherclusters'(green) sin Wright;Tamous homes or
Pennsylvania's attractions. Those sites, in turn, could be connected to
clusters (red) on famous architects or architecture in general.
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MAPOFINTERACTINGPROTEINSin yeast highlights tl'\!!discoverytha.~high1ylinked, or hub, proteins
tend to be crucial for a cell's survival. Red denotes essential proteir"js(their removal will cause the cell
to die). Orange represents proteins of some importance [their removal will slow cell growth). Green
and yellow represent proteins of less.er or unknoWn significance, respectively.
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seen in materials science. In a crystallat-
tice, for instance, atoms have the same
number of links to their neighbors. With
other networks, the data are inconclusive.
The relatively small size of food webs,
whiclI §how predator-prey relationships,
has prevented scielltists from reaching a
clear conclusion regarding that network's
type. And the absenc~ oflarge-scale con-
nectivitymaps of the brain has kept re-
searchers from knowing the nature of
that important network as well.

Determining whetl~er a network is
scale-free is important in understanding
the system's behavior, but other signifi-
cantparameters merit attention, too.
One such characteristic is the diameter,
or path length, of a network: the largest
number'gf hops required to get from one
node to another by following the shortest
route possible [seebox on opposite page].

Finally, knowledge of a network's gen-
eral topology is just part of the story in un-
derstanding the overall characteristics and
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b~havior of such systems. There might be
steep~osts, for instance, with the addition
of each link to a given node that could
prevent certain networks (such as the U.S.
highway system) from becoming scale-
free. In food Ghains, some prey are easier
to catch than others, and that fact has a
profound effe.cton the overall ecosystem.
With social networks, ties among house-
hold members are much stronger than
connections to c~sual acquaintances, so
diseases (and information) are more like-
ly to spread through such linkages. For
transportation, transmission and commu-
nications systems (such as the Internet),

congestion along specific links is a major
consideration: too much traffic on a par-
ticular link can cause it to break down,
leading to the potential failure of other
links that must then handle the spillover.
And the nodes themselves might not be
homogeneous-certain Web pages have
more interesting content, for instance-
which could greatly alter the preferential-
attachment mechanism.

Because of these and other factors, sci-
entists have only begun to uncover the be-
havior of scale-free systems. Immunizing
hubs, for instance, might not be sufficient
to stop the spread of a disease; a more ef-
fective solution might be found by con-
sidering not just the number of connec-
tions a person has but also the frequency
and duration of contact for those links.

In essence, we have studied complex
networks first by ignoring the details of
their individual links and nodes. By dis-
tancing ourselves from those particulars,
we have been able to better glimpse some
of the organiziIlg principles behind these
seemingly incomprehensible systems. At
the very least, knowledge from this en-
deavor has led to the rethinking of many
basic assumptions. In the past, for exam-
ple, researchers modeled the Internet as a
random network to test how a new rout-
ing protocol might affect system conges-
tion. But we now know that the Internet is
a scale-free system with behavior that is
dramatically different from a random net-
work's. Consequently, investigators such
as John W. Byers and his colleagues at
Boston University are revamping the com-
puter models they have been using to sim-
ulate the Internet. Similarly, knowledge of
the properties of scale-free networks will
be valuable in a number of other fields, es-
pecially as we move beyond network to-
pologies to probe the intricate and often
subtle dynamics taking place within those
complex systems. Ii!I1
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